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Abstract. In this paper, thg2 + 1)-dimensional sine—-Gordon equatiozp$c) introduced by
Konopelchenko and Rogers is investigated and is shown to satisfy the Ramieperty. A
variable coefficient Hirota bilinear form is constructed by judiciously using the P&rdealysis

with a non-conventional choice of the vacuum solutions. First the line kinks are constructed.
Then, exact localized coherent structures in thsci equation are generated by the collision

of two non-parallel ghost solitons, which drive the two non-trivial boundaries present in the
system. Also the reason for the difficulty in identifying localized solutions iretiesii equation

is indicated. We also highlight the significance of the asymptotic values of the boundaries of
the system.

1. Introduction

Considerable effort has been given recently to generalize- 1)-dimensional soliton
equations to(2 + 1) dimensions (see, for example, [1-3]). Of these equations, the
symmetric generalizations have gained considerable attention in the last decade, particularly
after the identification of localized, exponentially decaying solutions [4,5]. Notable
amongst these equations are the Nizhnik—Novikov—Veselow ) equation [6-8] and the
Davey-Stewartsonbpg) equation [4,5,9]. They represent, in tur(® + 1)-dimensional
generalizations of the Korteweg—deVries equation and nonlineard8iciger equation,
respectively, wherein the two spatial variables occur on an equal footing. It is natural to look
for such types of generalization for the other ubiquitous equation, namely the sine—Gordon
equation. Konopelchenko and Rogers [10,11] have proposed an interesting symmetric
generalization of the sine—Gordon equatior(2e+- 1) dimensions through a reinterpretation

and generalization of a class of infinitesimaldklund transformations originally introduced

in gas dynamics by Loewner [12] as far back as in 1952 to give the system of equations

¢x _ ¢y (¢y0x - ¢x9y) _

[sin@]x [sinel T sRe 0 (1)
¢, by @6y — dy0.)

[sine]x B [sinel TG 0 10)

wheref, = ¢ + ¢’. If we assume thap’ = 0 and tha®, = ¢ is independent of, then (b)
becomes trivial and @) gives the sine—Gordon equation

0, = Sing . 2
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Equation (1) has a humber of equivalent representations and its localized solutions have
been constructed by Dubrovsky and Konopelchenko [13] by using theethod. Even
though the(2 4+ 1)-dimensional sine—Gordoresg equation is known to be completely
integrable, its Painleéy property has not yet been established. In this paper, we address
ourselves to this problem and carry out the singularity structure analysis by concentrating
on a convenient form of the sine—Gordon equation and confirm its Pa&inlagwure. We also
deduce its bilinear form straightforwardly from the Paidanalysis using non-conventional
vacuum solutions and construct exponentially localized structures using the Hirota method
by driving the two boundaries through two non-parallel ghost solitons.

The plan of the paper is as follows. In section 2, we discuss the linearization and
equivalent representation of the sine—Gordon equation apart from discussing its properties.
In section 3, we carry out its singularity structure analysis and confirm its Paipi®perty.
Section 4 is concerned with the bilinearization and generation of line kinks oftke
equation. Localized coherent solutions2anfsGi equation are constructed in section 5 and
the absence of such solutions for thesGil equation is also discussed. Section 6 contains
a short discussion of the results.

2. Linearization and equivalent representation

Equation (1) is known to arise as the compatibility condition [2,10, 11] for the triad of
operatorsLy = 3, — Sd,, L, = 8,8, — V3, — W, L3 = 8,3, — Vd, — W, where
SZ_[COSG sing ] Vzl[o —9,}
sind —cosH 216, O
1 |:¢x — ¢, COSH ¢, sing } 3)
Y7 2sing | —¢ysind  —(¢; + ¢} cosH)
1 [¢y — ¢, COSH ¢ sing }
2sing —¢, Sind —(¢, + ¢, coso) |-
The commutators of the operatoks, L, and Lz are [L1, Ly] = SyLo, [L1, L] = Sy Ls,
[Ly, L3] =0, when (1) is satisfied.

To analyse theDsG equation, it is convenient to look for a more elegant representation
since equation (1) is rather complicated for further investigation. In fact, it has been shown
[14] that one can indeed arrive at a more interesting representation fanbgeequation
as the compatibility condition of a Lax-pair which is gauge equivalent to a pair constructed
out of L1, Ly, L3 as

x =

¢§nt + %‘977105 + %eépn =0 (4a)

Pen = 3(0:0,), (4b)
where

n— @]+ 6,, cosd — ¢.] — 6, cosp
pe = — ([457 ¢n] nt ) )= ([¢E ¢g] &t ) (4C)
sin@ siné

with the characteristic variablésandn having the form

E=3(y—ox) n=3(+ox) (5)

wheres? = +1 andp is some potential. Here? = 1 corresponds to the sine-Gordon |
equation and? = —1 to the sine-Gordon Il equation. Eliminatipgfrom (4), one obtains
the single equation

n H
Oene +ma1(n, )0 +ma(§, )0, + ;119,7/ (0:0,), dny’ + 21‘95 / (0,0¢), dc’ =0 (6)
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where

ma(n, 1) = im_3p, (& n.1) (7a)

ma,0) = M _3pc(Em.0). (7b)

The usual(1+ 1)-dimensional sine—Gordon equation can be retrieved when the boundaries
tend to a constant as

Oz = —(m1 + my) sind = —m sing (8)

where the constant boundaries are (et 1)-dimensional analogue of mass in the
(1 + 1)-dimensional sine—Gordon equation.

3. Singularity structure analysis

Before we carry out the singularity structure analysis [15], we effect the transformation

a=-26, r=-26 ©
in equation (4) and convert it into a system of three coupled equations as

G + 3059 + 3097 =0 (108)

Fyr + %pgq + %pnr =0 (1)

02,05,7 = —=2(qr); - (10c)

We now consider a local Laurent expansion in the neighbourhood of a non-characteristic
singular manifoldp (¢, n, t) = 0, (¢, ¢, # 0). Assuming the leading orders of the solutions
of equation (10) to have the form

q = qod” r =rop’ p = pod” (11)

wheregqo, ro and pg are analytic functions of¢, n, t), one can isolate the allowed values of
a, B andy. Substituting (11) in (10) and balancing the most dominant terms, we obtain

a=pf=y=-1 (12)
with

po=2¢ g5 =09  r5=0"¢f. (13)
To find the resonances, we now substitute the Laurent expansion of the solutions

q=qop ™+ + g+

r=r0¢’l+~-~~|—r]~¢j’l+~-- (14)

,0=,00¢71+"'+,0j¢j71+"'

into equation (10) and equate the coefficientg6f2 to zero to give

(> = 3j + Ve ~bub Y37 a0t +rop] | g,
— e GZ=3j+ Dby Y 2[q00 + rody] [ rj } =0. (15)
2ropi(j — 2) 2900:(j —2) o2 —D(j — Dby | P

For non-trivial solutions to exist, we require the resonance values to be
j=-1,11224. (16)



1554 R Radha and M Lakshmanan

The resonance aj = —1 represents the arbitrariness of the singular manifold
¢(&,n,t) = 0. In order to prove the existence of arbitrary functions at the other resonance
values, we now substitute the full Laurent series (14) into (10). Collecting the coefficients
of (72,073, ¢, we end up with the equations (13). Now gathering the coefficients of
(#2972, $~2), we obtain

—qos$r — qoids — qoder + 3[p0eqo + poyrol — 3[q1s + raidylpo =0 (17a)
—ron®: — For®y — rody: + %[PosCIo + poyro] — %[611¢s +r1¢y]po =0 (1)
o?[posdy + pon®s + poden] = —2lgorol; + 2¢[qor1 + roqa] - (17c)

Substituting (13) in (17), it can be easily shown that the above three equations degenerate
into a single equation

qgor1 +roq1 + o%ps, = 0. (18)

The above equation implies that there is only one equation for the three vagablesand
p1 and hence two of them must be arbitrary.
Now, collecting the coefficients afp~2, ¢, ¢~ 1), we have

qosr + 3[posq1 — PoPsq2 + p1:qo + P2deqo + poyrL — Podyr2 + Pryro + p2¢pyrol = 0

(19)
rop + 31P0sq1 — Podsq2 + preqo + P29 qo + oy — Podyr2 + pryro + p2dyro] = 0

(1%)
o2 poey = —2(qor1 + roq1): - (19)

Using equations (17) and (18), one can easily check that) (&9identically satisfied for
botho? = £1 and that (18) and (1®) reduce to the identical equation (sing@, = ro,)

Q2Bs 1 + radudi + 302(qods + rody) = qost + q1dsi + ridy + 3101590 + p1y70] - (20)

Thus, again we have only a single equation for three varialpdes, and p, and this
suggests that two of them must be arbitrary corresponding #02, 2. Next, collecting
the coefficients of(¢°, ¢°, °) and solving the resultant equations, the set of functions
(g3, r3, p3) can be uniquely determined.

Now, from the coefficients ofp?, ¢, ¢1), we obtain

5q4psd; — radydr + 3pa(qods + rody) = A (21a)
Sragy®r — qadeds + 3palqods + rod,) = B (21b)
Aropiqa + Aqopira + 60°Ps pypa = C (21c)

where

A = —qoer — 2q3:h — 29395 — 293¢ — 3[P0sqs + P1:q2 + P2deqz + p2:q1] — P3deqr

—papyr1 — 3[pasqo + ponra + P12 + Padyra + p2yrL + pagrol (22a)
B = —ray — 2ra; ¢ — 23y — 2ray — 3[p0eqs + p1eq2 + p2dsq2 + p2:q1] — padeqa
—p3dyr1 — 3[pacqo + poyrs + P12 + p2dyra + p2yre + p3yrol (22b)

C = —2q0;r3 — 2qu12 — 2q2¢:72 — 2q271 — 4q3d,r1 — 2q3r0 — 2roq3 — 2r1q2 — 2r2¢:q2
—2rpq1 — Bradiqr — 2raqo — %[ p2en + 203 by + 203, + 2p30%,] -
(22c)

Analysing the above set of equations &24(21c), they easily can be reduced to a set of
two equations in three variablegs( r4 and p,) for botho? = £1 and hence one of them
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must be arbitrary corresponding to the resonance valee4. Thus, the general solution
{q,r, p}(&, n,t) of equation (10) admits the required number of arbitrary functions without
the introduction of any movable critical manifold, thereby satisfying the Paénfeaperty.
Thus, both thg2 + 1)-dimensional sine—Gordon | and Il equations (4) are expected to be
integrable.

4. Bilinearization and line solitons (line kinks)

Having proved the Painlémnature of th&2+1)-dimensional sine-Gordon equation, we now
proceed to obtain the other integrability properties likkcBund-transformation, bilinear
form, line solitons and localized solutions (if admissible). To construct thekBind
transformation, we now truncate the Laurent series at the constant level term, that is
gi =r; =p; =0for j > 2 to yield

q=q0 " +q r=rop t+r1 p = pop "+ p1 (23)
where the pair of variablegy, ¢1), (r, r1) and(p, p1) satisfy equation (10) whilgg, ro and
po are given by (13). The above equation (23) may be considered as an @ckhuil
transformation in the sense that we can use the vacuum solution to bilinearize the given

nonlinear evolution equatiorN(EE) to generate higher soliton solutions. Thus, the Hirota
bilinear form can be constructed by considering the vacuum solution

& n
Gi=r=0  p =2 / ma(E', 1) G’ + 2 f ma(n's 1) chy (24)

where we have made use of the arbitrarinesg,ofo construct its vacuum solution. Here
m1 andm, are arbitrary functions ofn, r) and (&, 1), respectively (cf equation (10)). With
the above vacuum solution, the autéd&lund transformation becomes

q=qo/d=¢g/P (252)
r=ro/¢p =h/¢ (250)
3 n
p = po/d + o1 = 20, loge + 2 f ma(E, 1) dE' + 2 f ma('s 1) dy (250)

Equation (25) can be interpreted as the dependent variable transformation which helps
in the bilinearization of equation (10). Using this, the Hirota bilinear form of equation (10)
becomes

D¢Dig - ¢+ ma(§,0)g - ¢ +mi(n,t)h-¢p =0 (269)
D,Dih - ¢+ ma,0)g - ¢ +mi(n,)h-¢p =0 (2680)
0°D:D,¢ - ¢ = —2gh (260)
hD,D;¢ - ¢ — gDeDi¢p - ¢p =0 (26d)

where D is the formal Hirota operator. An obvious interesting feature of the system (26) is
the presence of coefficients, (&, t) andmi(n, t) which are essential for the formation of
dromion-like coherent structures as we point out below. The three dependent vagiables
h and¢ can be uniquely determined using equationsaj2@6c) consistent with (28).
To generate line kinks, we now expand the functigng and¢ in the form of a power

series in a small parameteras

g=eg® +e3g® 4 ...

h=eh® +&3h® ... (27)

¢ =1+8%9p? +%W ...,
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Substituting (27) in (26) and comparing the coefficients of various powets we obtain
the following sets of equations:
&:
g + ma€, g® + ma(n, DAV = 0 28)
hy +ma(&, g™ +mi(y, DAY =0
o’y = —gVn® (29)
&3
8 +ma(E, 8™ +mi(n, Hh®
= —[D:D,gY - ¢@ +ma(5, g - 6@ + mi(n, HAD - @]
hiy + ma(E, 0g® +ma(n, Hh® (30)
= —[D,Dih® - ¢@ + my(E, 1)g™ - ¢@ + ma(n, HAY - @]
W2 — gV =0
et
202y + 02D D, ? - @ = —2[hVg® + g @] (31)
and so on.

(i) Line kinks of sine—~Gordon (o2 = 1). To generate soliton solutions of sine—~Gordon |
equation, one has to solve the variable coefficient equations of the type (28). To solve (28)
explicitly, we make the following transformation by virtue of (9)):

gV = 7 Y = ju, (32)
to convert (28) into
Ugy +ma(&, Hu, +mi(n, Hug = 0. (33)
To solve the above variable coefficient equation, we look for the separation of variables
u@,n,1)=PE HOM, 1) (34)
to give rise to
Oyl Per +m2(§, )Pl + Pe[Qy +m1(n,1)Q] = 0. (35)
The above equation suggests that we should have
Pey +mo(&, )P = kP (36a)
Op+mi(n, )0 = —kQ, (36b)

wherek is a constant. Now, redefining — P expkt), @ — O exp(—kt) and dropping
the hats, equation (36) becomes

Per +ma(§,1)P =0 (379)
Qnt + ml(’% t)Q =0. (37b)

To generate line kinks, we assume that the arbitrary functiogi&, ) and m1(n, 1)
tend to constant values, andmj, respectively, as

ma(§,t) — mp,mi(n,t) — my. (38)
|&]—>00 |n|—o00
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It should be mentioned that the asymptotic values of the boundaries should be non-zero in the
case of(2+1)-dimensional sine—Gordon equation for non-trivial solutions to exist in contrast

to Davey—Stewartsorpg) and Nizhnik—Novikov—Veselowiv) equations [4, 5, 7, 8] where

one normally takes the asymptotic values of the boundaries to be zero for line soliton
solutions. Hence, equation (37) becomes

Pgt—i-mZP =0 Qm—i-le =0. (39)
Equation (39) has solutions of the form
N
mp
P= 2pi€ — - 4
;exp< pi§ 2,,,.”0’) (408)
N my
0= Zexp(zqin - ) (400)
i=1 ‘

wherep;, g;, c; andc; are arbitrary constants so that

N N
gV =) 2qexpix) KT =) 2piexpn)
i—1 i=1

i = 2piE +2qm — 2p = 24 4 4O 12 : are constants (41)
2q;  2p;
To construct one line kink, we assumé= 1 and so we have
g'Y = 2ig1 exp(x1) hY = 2ipy exp(x1) . (42)
Now, equation (29) becomes
¢ = Ap1g1exp2xa) . (43)
Integrating (43), we get
»@ = exp(2x1 + 25) exp28) = ;. (44)
Hence, the one line kink solution abscl becomes
D i
£g 2ig1 exp(x1)
1= 260 (459)
1+e29@ 1+ exp2x1+ 28)
hD 2ip; ex
€ P1EXP(X1) (450)

"T116%@ T 11 exp2p +25)
Reverting back to the original field variabfe(cf equation (9)), one gets the familiar line
kink solution as

6 = 4tarm[exp(x1 + 8)]. (46)

The above solution is identical to the one given by Konopelchenko [2]. The construction of
multisoliton solutions is quite straightforward. One just takes any multisoliton solution in
¢® or h® and generates the corresponding elements in the truncated series (27) by solving
(28)—(31).

(i) Line kinks for2p sine—Gordon Il In the case of sine-Gordon Il equatiai? = —1), the
characteristic variables andn are conjugate to each other as is evident from equation (5).
As the field variable is always real, one has to impose certain constraints on the parameters
as well as on the asymptotic values of the boundarigsand m, to generate line kinks.
They are

q1= p1 my = mj E=z,n=2". (47)
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Again, giving the transformation (by virtue of (9))
g =u, AV =y, (sinces? = —1) (48)
to equation (28), we end up with the equation (39). In view of the transformation £47),

and Q become conjugate to each other and hence their product becomes real. To generate
one line kink, we now choose fa¥ =1 as

g = 2p; exp(xy) hY = 2ps exp(x;)

X1 =2p1z +2piz* — Zalit - 2m711t +x1. )
Solving (29) foro? = —1,

@ = exp(2x; +28) exp2s’) = 5. (50)
Hence, the one line kink solution @b sine—-Gordon Il equation becomes

6 = 4tanmexp(x; + )] (51)

which is again in conformity with the one generated by Konopelchenko [2]. Multikink
solutions can also be generated as in the case of sine—Gordon | equation by considering any
multisoliton solution ing® or #® and generating the other elements of the corresponding
truncated series by solving the remaining equations.

5. Localized coherent structures for2p sine—Gordon | 2DsGl) equation (o2 = 1)

We shall now bring out the significance of the boundawigés, t) andm1(n, r) and thereby
invoke the concept of ‘ghost solitons’ driving the boundaries before generating localized
solutions of2bsGl equation. Now, from equations (4) and (6), the two arbitrary potentials
pe and p, for the 2DsGI equation can be expressed as

n
%pé = mz(é’ t) + % / dn/(efen’)r (523)

3
Loy = ma(n.1) + 1 / d'(6,6:): (525)

wherem1(n, t) andms(&, t) are the two non-trivial boundaries. From the above equations,
it is evident that even if the physical field variatlesanishes (correspondinglyor r in (9)
vanish), the potentialg: and p, are driven by the two boundaries, (¢, r) andm1(n, 1),
respectively. Thus, one can indeed invoke the familiar concept of ghost soliters@
equation also similar tos andNNvV equations [16, 8]. To generate the ghost solitons, which
drive the boundaries for constructing localized solutions, one has to solve the variable
coefficient differential equations (37) as such.

To generate localized solutions, we now choose

¢ =iu, =icPE 00, 1) (53)
h® =iug =i Pe(5,1)Q(n, 1) (54)

where P(&,¢) and Q(n, t) are the solutions of (37) ang is a constant parameter. Then,
equation (29) in the case of sine—Gordon | takes the form

o2 =2 (PP)(QQy). (55)
Solving equation (55), we have

2
6@ = %PZQZ. (56)
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To construct exponentially localized dromion solutions, one has to solve equation (37)
explicitly. As the boundaries have non-zero asymptotic values for non-trivial solutions, one
can rewrite equation (37) as

P+ [my(E, 1) +ma] P =0 (57a)
Oy +[mi(n. 1) + m1]Q =0 (5M)

where we have expressed the functiengn, 1) andm(&, t) as

my(n, 1) = my +my(n, 1) (589)
ma(&, 1) = my + mbh(, 1) m1, mo are constants (580)

As we expect the boundaries to be driven by ghost solitons (wavelike solutions) for localized
structures, we now assume them to have the specific form

my(E, 1) = my(§ + Vaot) = my(&") (59a)
my(n, 1) = my(n+ Vit) = my(n) . (59%)

Then, equation (57) is now reduced to the stationary, time-independeiitdBuir equation
as

Peg + [;m’g(s/) + ";2] P=0 (608)

Oy + | i+ 7t | 0 =0. (600)
Redefiningm,/ Vo = k? andm1/ Vi = w?, we have

Peg + [‘Zm;(s’) + kz} P=0 (61a)

Oy + [ i+ o] 0 =0, (610)
Let k; = ipj, wx = g, pj,qx and P;, Ok, 1 < j < L, 1 < k < M be the discrete

eigenvalues and eigenfunctions associated \MQ@) and m/ (), respectively. If the
reflection coefficients associated with the potentiejg&’) andm’(n’) are zero, the discrete
eigenfunctions can be found in closed form as [17]

P+Z

0, + Z P expl=(g» + gl Ok = by eXP(—gan’) (620)

eXp[—(Pn + P/)E ]P = a, exp(— png ) (62&)

with the potentials being given by

= —2v22an[<exp{ PiE NPl (63a)

m), = —2v1an[(exp{—qkn’ngk]nf : (630)

k=1
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To generate thél, 1) dromion solution, we také. = M = 1 and so we have

ay expl—pi&'} as
P = exp(281) = — 64a
T It expi—2(piE - 80} ) 2p1 (643)
byexp{—qin'} b?
= exp(2s,) = —— 64b
1= 1 expl—2(qun — 52)) &%) = o (64)
miy = 2Vap sechi(p1€’ — 61) (64c)
m) = 2Vig? secB(qin’ — 82) . (64d)

Using equation (64), we now choose in accordance with (56)

2 azbs exp{—2(p1&’ + q1n')}

=1+ 65
¢ * 4 (1+exp{—2(p1&’ — 81)D2(L+ exp{—2(q1n’ — 82)})? (63)
and substitute this in equation @6(c2 = 1), we obtain
¢2a2b?prq1 exp{—2(p1&’ + qin)}[exp{—2(p1&’ — 81)} — 1][exp{—2(q1n’ — 82)} — 1]
(1 + exp{—2(p1&’ — 8 D3 (L + exp{—2(q1n’ — 82)})3
= —gh (66)

where¢ is some constant parameter. This suggests that the fungtiansiz should have
the form in accordance with (53) and (54) as

: |: ai exp(—pi&") i| |:b1611 exp(—q1n")[exp{—2(q1n’ — 82)} — 1]:|
g=Iic (67a)
(1 + exp{—2(p1&’ — 51)}) (1+ exp{—2(q1n’ — 82)})?
b |:a1P1 exp(—p1&))[exp{—2(p1&’ — d1)} — 1]} [ byexp(—qin’) }
—i . (67)
(14 exp{—2(p1&’ — 81)})? (1 + exp(—2(q1n’ — 82)})

Substituting (65) and (67) in (25), one finally gets the (1,1) dromion solution through (9) as
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Figure 1. Localized solution of two-dimensional sine—Gordon | equatiom at 0.1 with the
parametergp; = 0.3,¢1 = 0.6, V1 = -0.2, Vo = —-0.4, ¢ =0.1.
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s exp(—[pi& + qin'l} ]
1+ exp{—2(p1&’ — s DA + exp{—2(q1n’ — 62)})

which is plotted in figure 1. The above solution is concurrent with the one given by
Dubrovsky and Konopelchenko [13] who obtained it through the inverse scattering transform
procedure in the-bar formalism. In our analysis, we have reduced the equation (37) into an
algebraic equation (62) so that one can indeed generalize it to multidromions by considering
any number of bound states even though the actual analysis proves to be cumbersome and
unmanageable by hand calculation.

In the case of2D sine—Gordon Il equation, as we have noted earlier, the conjugate
nature of the independent variables imposes constraints on the parameters as well as on
the boundariesni(n,t) and mz(&,t) which are now complex. Hence, it is not clear
what will be the nature of the spectrum of solutions of (37) subject to (47). Thus, the
existence of localized structures zfsGll equation essentially depends on the solvability of
the equation (37) subject to the constraints (47) and this remains an open question.

0 = 4tant [ (68)

6. Discussion

In this paper, we have carried out the singularity structure analysis ab$®&equation and
shown that it admits the PainleP) property. We have then derived its bilinear form with
variable coefficients straightforwardly from the P-analysis and then used it to generate line
kinks for both the2D sine—Gordon | and Il equations by treating the boundaries as non-zero
constants. We have then generated localized solutions of the sine—Gordon | equation by
driving the boundaries through two non-parallel ghost solitons. We have also brought out
the significance of the non-zero asymptotic values of the boundaries in sharp contrast to the
DS andNNV equations. Existence of localized solution2DEGII equation remains an open
guestion depending upon the solvability of equation (37) subject to the constraints (47).
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